
E s s e n t i a l   f o r   s o f t w a r e   t e s t e r s
TE TER

December 2016 v2.0 number 39£ 4  ¤ 5/ 

Including articles by:

David Gelperin 
ClearSpecs Enterprises 

Peter Zimmerer 
Siemens

Christian Brandes 
imbus AG

Paul Gerrard 
Gerrard Consulting

Andreas Golze
Cognizant

SUBSCRIBE
It’s FREE

Tools of 
Tomorrow



Seamless Integration

Any Technology

Cross-Technology | Cross-Device | Cross-Platform | Cross-Browser

Broad Acceptance

Robust Automation

Quick ROI

License
1

All Technologies.All Updates.

RECORD MODULES

MOUSE

BROWSER

KEY

VALIDATE

USER CODE

ATTRIBUTE EQUAL

MY_METHOD

SEQUENCE

CLICK

OPEN

RECORDING_1

RECORDING_1MY_METHOD

void ITestModule.Run()
        {
            Mouse.DefaultMoveTime = 300;
            Keyboard.DefaultKeyPressTime = 100;
            Delay.SpeedFactor = 1.0;
        }

www.ranorex.com/try-now

All-in-One
Test Automation



TE TER Tools of tomorrow 

3

From the editor

We aim to promote editorial independence
and free debate: views expressed by 
contributors are not necessarily those 
of the editor nor of the proprietors.
© Professional Tester Inc 2016  
All rights reserved. No part of this publication 
may be reproduced in any form without prior 
written permission. ‘Professional Tester’ is 
a trademark of Professional Tester Inc.

4

Professional Tester is published 
by Professional Tester Inc

10

14

As 2016 draws to a close, we asked our 

contributors to look ahead and give their 

views on what could - or should - shape 

testing in the years ahead. 

David Gelperin tackles the failure to address 

'technical debt' and urges testers to focus on 

the definition and verification of quality goals 

as well as functional requirements. Peter 

Zimmerer reveals that Siemens has created 

'Test Architect' as a new role which it now 

views as critical. He outlines the 'why' and 

'how' of the role and points out that this is 

far more than a 'face lift' for testing, as it will 

play a central role in the ongoing success 

of the company. 

As well as fresh thinking, Paul Gerrard also 

looks at how bots could play a part in 

supporting (not replacing) testers. And in the 

first of a two-part feature, he invites readers to 

join the conversation on how a tool-supported 

hybrid exploratory/structured approach 

could work.

There is plenty more to read and we 

are looking forward to hearing your views. 

In the meantime, the team at Professional 

Tester would like to wish you all a very happy 

Christmas and here's to a prosperous 2017. 

Vanessa Howard

Editor 

IN THIS ISSUE

Fixing agile 
David Gelperin sets out how a new approach to agile can avoid 

the high cost of technical debt. 

Test Architect a key role defined
Siemens are aiming to employ 50 test architects by the end of 2017 and 

Peter Zimmerer explains why this will prove fundamental if tomorrow's 

challenges are to be met. 

Designing near-production test environments
Christian Brandes outlines a new approach to designing test environments 

that is feasible, describable and comparable.

New Model Testing: 
A new process and tool – part 1
Paul Gerrard argues that old test methods won't work in the future and in 

this opening feature, examines a new approach that incorporates tools to 

support testers. 

Testing Talk 
In this issue's Testing Talk Cognizant's Andreas Golze discusses 

how companies with siloed practices can move to a well-implemented 

DevOps strategy.

18

David Gelperin 

Peter Zimmerer 

Christian Brandes 

Paul Gerrard 

Andreas Golze

Editorial Board 
Professional Tester would like to extend its 
thanks to Lars Hoffmann, Gregory Solovey 
and Dorothy Graham. They have provided 
invaluable feedback reviewing contributions. 
The views expressed in Professional Tester 
are not those of the editorial team. 

Editor
Vanessa Howard 

editor@professionaltester.com

Managing Director
Niels Valkering

ops@professionaltester.com

Art Director
Christiaan van Heest

art@professionaltester.com

Sales
advertise@professionaltester.com 

Publisher
Jerome H. Mol

publisher@professionaltester.com

 Subscriptions
subscribe@professionaltester.com

Contributors to this issue

PT - December 2016 - professionaltester.com  

22

Contact

Tools of 
Tomorrow
Tools of 
Tomorrow



by David Gelperin

Fixing agile

PT - December 2016 - professionaltester.com 4

Test process improvement

Big Requirements Up Front (BRUF) is 
an agile anti-pattern. Agile discourages 
early identification of comprehensive 
requirements for fear of waste and gold-
plating. Building something incrementally 
and showing it to customers for timely 
feedback often makes perfect sense 
for functionality. But, functionality 
is not the whole story.

Consider quality attributes, both external 
and internal, and their goals. External 
qualities can be seen by customers. 
Behaviours such as safety, security and 
reliability need time periods of years to 
suggest their satisfactory achievement. 
Other external qualities, such as ease of 
use, can show satisfactory achievement in 

The way to manage quality debt is early 
identification of quality goals

Projects with tight 
deadlines are often under 
pressure to take shortcuts 
that may sacrifice quality.

a shorter time. The situation is much clearer 
when achievement is unsatisfactory. This is 
when systems kill, crash or are breached. 
Internal qualities such as portability, 
testability and code readability, can’t be 
seen by customers. 

Achievement of all internal and many 
external quality goals crosscut the 
functional code. For example, exception 
handlers should be everywhere. Cross-
cutting qualities can’t be implemented in 
a single module or group of modules. 
They must be implemented everywhere.

This fact is a problem for any development 
process that doesn’t identify its quality 
goals, achievement strategies, and 
verification strategies before incremental 
development. Without early identification, 
each early increment will have high-cost 
technical debt due to voluntary ignorance.

Technical debt refers to the extra work 
created when “easy-to-develop” code is 
used instead of code for the best overall 
solution. “Easy-to-develop” entails the use 
of simplistic or unnecessarily complex 
designs. Technical debt always entails 
shortcuts, both deliberate and unin-
tentional. Unintentional debt results 
from ignorance of needs or effects.

Examples of deliberate debt are code 
that doesn’t validate input, handle edge 
cases, or handle exceptions. Examples of 
debt that may be deliberate or unintentional 
are missing or incorrect functionality, code 
that doesn’t comply with development stan-
dards, and code that doesn’t deal with other 
quality goals such as safety, security, or 
privacy. Examples of unintentional debt are 
code that has unnecessarily complex logic 
or design and unnecessary functionality.

From a requirements perspective, we 
distinguish functional debt from quality 



  

 

qualities such as safety relies on analysis 
and technical reviews as well as testing.

To verify quality goals, testers must expand 
their scope of responsibilities to include the 
team’s use of other verification tactics. 
Testers should promote quality-aware 
development. Quality-aware development 
is NOT a development methodology, but a 
three-part supplement to whatever incre-
mental methodology you are using now 
(including agile). 

Part one of the supplement is an initial 
quality sprint that includes:

1. Selection of relevant quality attributes 
from a comprehensive quality model, 
definition of quality goals and assign-
ment of priorities, during a 
technical review;

debt. Functional debt such as incomplete 
or incorrect functionality normally has a 
moderate cost of failure and repair. Quality 
debt usually has a much higher cost 
because of its criticality and 
crosscutting nature.

A smart debt management tactic is to 
avoid unintentional quality debt by:

1. deepening quality understanding 
using a comprehensive quality model

2. collecting quality lessons

3. complying with effective development 
standards that control complexity

4. using risk-prioritized quality verification

Unless quality debt is paid off before 
final delivery, the final product will have 
significant quality defects. Delayed identi-
fication is also a problem for customer 
expectations. Customers have seen the 
functionality, so they have difficulty 
understanding the delay in application 
delivery caused by quality refactoring.

The way to manage quality debt is early 
identification of quality goals and incre-
mental execution of achievement and 
verification strategies. Since developers 
often focus on functionality, testers should
focus on the definition and verification of 
quality goals as well as functional require-
ments. Verification (tactics are included in 
the model shown in Figure 1) includes 
various forms of testing as well as opera-
tional monitoring, technical reviews, verifi-
cation-focused analysis, and verification-
focused measurement. Since the achieve-
ment of internal qualities can’t be demon-
strated by testing or operational monitoring, 
their verification relies on automated static 
analysis and technical reviews. Even the 
effective verification of some external 

5PT - December 2016 - professionaltester.com  

Test process improvement
 

Figure 1. Top-level view of the LiteRM 
               quality model. 

Figure 2. External quality groups and subgroups. 



3. Verify its incremental achievement 
and remove defects as needed.

Part three is a quality retrospective that 
collects quality learnings and records them 
in the comprehensive quality model and/or 
the development standards.

The feasibility of quality-aware 
development depends on the use of a 
quality model that describes acomprehen-
sive set of qualities and their characteristics 
including leading and operational indicators, 
supporting and conflicting qualities, threats 
and mitigations, and achievement and 
verification tactics. Such a model helps 
to define quality goals, achievement 
strategies, and verification strategies.

One quality model is organized into 
external and internal attributes, as shown 
in Figure 1.

These two collections (as shown in Figures 
2 and 3) are organized into groups and 
subgroups.

Each group displays possible support 
relationships between its attributes. When 
one attribute might support another, such 
as reliability supporting availability, the 
supporting attribute is indented.

The model uses “subgroups” to indicate 
quality topics that are fully factored into 
a set of quality attributes. For example, the 
performance subgroup is a quality topic, 
decomposed into responsiveness, through-
put, capacity and efficiency. Topics have no 
existence or meaning separate from their 
component attributes. If “improved perfor-
mance” were to appear as a requirement, it 
should be identified as unacceptably vague.

Topics and attributes are displayed as an 
outline. However, this is a simplification of 
their actual relationships. For example, the 
basic attributes (the first group of internal 
attributes) support all other attributes, 
including themselves. Some attributes are 
supported by attributes that are not directly 
below them. The actual support structure is 
explicitly described in the attribute charac-
teristics. Using safety as an example, we 

2. Analysis of each pair of potentially 
conflicting quality goals and identifi-
cation of ways to resolve the conflicts 
so an adequate architecture can be 
identified;

3. Analysis of each quality goal to identify 
its hazards, mitigations, and supports, 
specification of incremental achieve-
ment and verification strategies, 
assessment of their feasibility, and 
adjustment as needed.

Part two is a set of tasks to be added 
to each iteration.

For each quality goal:

1. Reassess its achievement and verifi-
cation strategies and update as needed;

2. Carry out its achievement strategy, 
clearly identifying quality support code;

PT - December 2016 - professionaltester.com 6

Test process improvement

Figure 3. Internal quality groups and subgroups. 



illustrate the characteristics associated 
with each quality attribute in the table 
below. Please note that the characteristics 
in italics are project-specific.

Safety characteristics 

Definition
The ability of a system to do little or no harm to valuable assets

Software subfield 
Safety engineering

Concerned stakeholders 
Customers, lawyers, tasked users, general public, designers

Assumptions/rationale
Safety is a fragile quality because it depends on up to 39 other qualities 
as well as on an accurate analysis of the hazards that must be managed

Quality attribute scenarios 
Described in Software architecture in practice

Leading indicators - provide preoperational evidence of attribute goal attainment
- Ratio of hazards added during HA technical review to hazard count after 

HA technical review 
- Ratio of defects found in safeguards during testing to number of safeguards

Operational measures
- Time since last "dangerous" failure or defect 
- Number of "dangerous" failures or defects detected per time interval
- Greatest harm from a harmful event
- Shortest harmful event free duration
- Longest harmful event free duration
- Expected length of harmful event free duration
- Expected rate of harmful events
- Ratio of actual loss to acceptable loss in a duration
- Estimated residual risk

Supporting qualities – always or some-times - dependability, ease of learning 
Note: While safety-critical functionality may be supported by these qualities, at the 
same time they may conflict with non-safety-critical functionality. For example, 
availability supports dependability, but it may cause non-safety-critical functionality 
to be sacrificed so the system can continue to operate in a safe, but degraded mode.

Conflicting qualities - adaptability qualities 

Threats - identify using hazard analysis

Mitigations - identify after identifying hazards

7PT - December 2016 - professionaltester.com  

Test process improvement
 



Other achievement tactics
- identify valuable assets and hazards
- identify safety-critical and safety-related functions and constraints needed for 

safety e.g. "The fire detection system shall detect smoke above X ppm 
within 5 seconds"

- isolate and protect safety-critical functions
- guard safety-critical functions with explicit conditions i.e. never with defaults 

such as "otherwise”
- identify safety-critical users
- eliminate or mitigate hazards i.e. identify appropriate control actions
- effectively execute control actions and receive accurate and sufficient feedback
- monitor system state to make sure safety-critical and safety-related functions 

are permitted
- alert users to dangerous actions with rotating warning messages
- precede each dangerous action with a delay so user can change their 

mind and cancel
- limit complexity
- design interfaces that prevent and detect user errors
- use warning labels and messages when appropriate

Verification tactics - review hazards and mitigations for completeness 
and effectiveness during a safety audit, thoroughly test each safeguard, 
measure and track time since last "dangerous" failure or defect and number 
of "dangerous" failures or defects, verify all supporting qualities

Elicitation Questions
- What valuable assets are at risk
- Which functions are safety-critical or safety-related
- Who/what can perform these safety-critical or safety-related functions 

and under what conditions
- What harm can the system or its actors possibly do
- What can mitigate these hazards

Associated Tools
- Measurement
- Achievement
- Verification

Resources
"Quality Attributes" Technical Report CMU/SEI-95-TR-021 Chapter 6
Engineering a Safer World
Software Safety Primer

Risk Factors
a. Developer understanding = [superficial, limited, deep]
b. Cost (implementation, verification, maintenance) = [high, medium, low]
c. Feasibility (technical, cost, understanding) = [low, medium, high]

Other Characteristics
a. Sources/Enterprise goals
b. Type = behaviour quality
c. Associated scope = [system, <specific partitions>]
d. Design scope = crosscutting [local, crosscutting]

PT - December 2016 - professionaltester.com 8

Test process improvement



the code will have many quality defects.

In conclusion, we know that waterfall 
development promotes BRUF including 
Quality Goals Up Front (QGUF). While 
BRUF may be a poor strategy for functio-
nality, QGUF is the best strategy for quality 
goals. Projects with tight deadlines are 
often under pressure to take shortcuts that 
may sacrifice quality. Projects that develop 
capabilities in priority order using QGUF 
and incremental quality development are 
in a better position to stop.

If you like the challenge of effective testing, 
you will love the challenge of effective 
quality verification 

9PT - December 2016 - professionaltester.com  

e. Consensus priority = [critical, important, desirable]
f. Architecture-relevant = maybe [yes, maybe, no]
g. Visibility group = externals

States
Goal states are < @unverified, verified, implemented, inactive>

Notes
Past goal specs
Past achievement and verification strategies

Current goal spec
Current achievement and verification strategy

This quality model is freely available at 
www.quality-aware.com/q-a-daves-stuff.php 

The 10th Annual State of Agile Report 
(2016) by Version One suggests that 
agile needs to become quality-aware. 
Among survey respondents, 56% don’t 
comply with coding standards and 63% 
don’t refactor. Unless most respondents 
not complying with coding standards only 
work in small teams, it appears that some 
agile projects sacrifice code readability 
from the start.

The meaning of the second result is less 
clear. Do the non-refactoring respondents: 
(1) never refactor, (2) refactor early, but 
not late or (3) have their code refactored 
by others? If their code is never refactored 
and they don’t identify quality goals early, 

Since 1965, David has been involved with software development, with a focus on 
testing, quality support, and requirements.  He enjoys learning and helping others 
improve their software practices.

Test process improvement
 



by Peter Zimmerer

Test Architect 
a key role defined 

What is a “Test Architect”? At Siemens 
we have invented this new key role by 
defining the responsibilities and tasks of 
a test architect and this article is about 
our journey to establish this new key 
role within the company.

What?
Currently there is no universal definition 
of a “test architect” in the community and 
only a few companies are implementing 
this role differently, for some examples see 
References 1-5. To me a test architect is 
neither just “a fancy title for an experienced 
tester” nor only a “senior test role with wide 
strategic scope” (see Reference 2). And 
defining a test architect as “a person who 
provides guidance and strategic direction 

Siemens is committed to creating a new 
role within testing so what has driven the 
decision and what responsibilities will 
come with the position?

A close collaboration 
with other roles and 
stakeholders is crucial 
for test architects.

for a test organization …” (see Reference 5) 
is ok, but there is more … and there is also 
a real business need for more …

Why?
Imagine that you build a system with 10 
million lines of code. To be successful this 
system should have a good architecture, 
and for that you need good software 
architects (see Reference 1). Next, to 
perform good testing on 10 million lines of 
code, you also need to build an appropriate 
test system - not by spaghetti coding but 
with a well-designed, sustainable test 
architecture and by applying innovative 
software and test technologies.

In the real world, our test systems increase 
in size, volume, complexity and unpredic-
tability (think about testing of autonomous 
systems for example). Additionally, digita-
lization (virtualization, cloud, mobile, big 
data, data analytics, internet of things, etc.) 
requires more than just a face lift in testing.

But, who is responsible for making this 
happen? Typically, neither the test manager 
(focus on budget, people, plans and logistics 
for the test organization) nor the quality 
manager (focus on process quality, 
certification and audits, regulations and 
norms across lifecycles and versions) will 
do this; therefore we need to create a new 
role on eye level with the software 
architects: the Test Architect is born.

Overall there are two major goals we want 
to achieve by test architects to meet the 
diverse challenges of shorter time-to-market, 
increasing complexity and more agility while 
keeping quality and other key system 
properties high:

• Better test strategies – raise testing 
to the strategic level closely aligned 
with the business goals and business 
drivers

PT - December 2016 - professionaltester.com 10

Test process improvement 



  
 

A test architect has two main respon-
sibilities that are directly linked to the 
two major goals mentioned above:

• For one the test architect is the test 
expert to define and apply innovative 
test strategies, test technologies, and 
novel test automation approaches and 
thus drive the overall quality of the 
system by effective and efficient 
testing over the whole lifecycle.

• On the other hand the test architect 
is the software architect for the test 
system (including test environment, 
test infrastructure, test automation 
frameworks) that is needed to test the 
system under test (SUT). Because the 
SUT is getting more and more complex, 
heterogeneous, and large in size with 
millions of LOC, the corresponding test 
system (that won’t be a small system in 
itself!) must be based on an adequate, 
sustainable, well-designed “test 
architecture”. The term “test architecture” 
is not widely used in the industry yet, but 
it is increasingly addressed in different 
research communities and standards, e.g. 
see References 6-10. An example for a 
high-level test architecture as specified 

• Better test systems, test architectures, 
test technologies

How?
To specify, implement, introduce, and 
establish this new key role we have 
developed the following four pillars:

•  A role profile specifying the 
responsibilities and tasks of a test 
architect in different areas: business 
understanding, requirements 
engineering, architecture and 
development, testing and quality, 
social skills and leadership

• A corresponding target profile with 
the needed skills and competencies in 
the different areas (see Figure 1)

• A unique expert training for test 
architects (see Figure 2) to set 
standards for testing within Siemens 
and to foster practice sharing and 
experience exchange within the test 
architects’ network

•  A certification to assure competencies 
and practical experience for critical 
projects

Business model
understanding

Business
understanding

Testing and
quality

Requirements
engineering

Architecture and
development

Social skills
& leadership

Ecosystems,
partnering, suppliers

Testing governance &
guidance 

Test process improvement

Lean & agile testing

Test methods & technologies

Design for testability

Test architecture

Test strategy

Test automation

Test & quality
management

Development processes

Global development

Product & system 
requirements

Expert

Advanced

Basic

Leadership

Social skills

Project management

Integration & deployment

Architecture quality

Architecture
& design

Quality requirements

Knowledge
Domain

Lifecycle issues

Standards, regulations, legal issues

knows about can apply drives, coaches and is able to
improve in own domain & scope

Basic: Advanced: Expert:

Figure 1: Test Architect (TeA) Competencies

Test Architect

Test Manager

11PT - December 2016 - professionaltester.com  

Test process improvement 
 



SUT) fit together well by good design for 
testability (this will influence sustainability, 
maintainability, serviceability as well) and 
that the architecture of the overall test 
automation approach (test architecture, 
testware artefacts, test automation frame-
works, testing tool landscape) is effective 
and efficient (see Reference 12).

For the participants of our expert training 
we recommend an ISTQB advanced level 
certification as a prerequisite, so we do not 
compete with ISTQB; in fact, our expert 
training is different, complementary and 
more advanced:

• To match the role profile and to achieve 
the target profile (see Figure 1) our test 
architect expert training explicitly focuses 
strongly (ca. 60% of the content) on 
topics beyond the “testing and quality” 
topics: business understanding (e.g. 

in Reference 7 is shown in Figure 3: that 
can be the starting point to derive and 
detail a “test architecture” for a specific 
test system.

To achieve this, test architects also 
have to apply state-of-the-art strategies, 
methods, practices, and tactics from 
software architecture and design: e.g. 
identify architectural forces (i.e. require-
ments and constraints), derive architecture 
significant requirements (ASR) based on 
business and technical risks, create a 
domain model for the problem space, 
model dynamics of scenarios, determine 
scope and boundaries of the system, do 
functional partitioning (logical view), 
structure the baseline architecture, add 
different architectural views, use design 
patterns, do strategic and tactical design, 
etc. That’s a lot of (interesting!) stuff for 
test architects to apply – an explicit des-
cription and explanation of these topics 
goes beyond the scope of this article, 
for more details see for example 
Reference 11.

A close collaboration with other roles 
and stakeholders (e.g. product manager, 
software architect, system integrator, 
operation engineer, etc.) is crucial for test 
architects, so collaboration and interaction 
is explicitly included in the test architect’s 
role profile. It specifies precisely what 
topics the test architect is “responsible” 
for and for which they are “involved”. 

For example, a test architect is respon-
sible for fostering the use of test-driven 
approaches in requirements engineering; 
to identify and manage technical risks for 
the testing environment and to drive 
integration of the testing infrastructure 
with the system under test (SUT). A test 
architect is involved in reviewing the 
architecture of the SUT and performing 
impact analysis for changes in the 
software system.

Especially important is the collaboration 
between the software architect and the 
test architect in a kind of “joint venture” 
to ensure that the system under test (SUT) 
and the test system (that is used to test the 

Preparation
phase

~2 months

CertificationWorkshop 1

Live as a TeA

4 days 

Workshop 2

Work as a TeA

3 days 

Workshop 3

Survive as a TeA

3 days 

Project
phase 1

~2 months

Project
phase 2

~2 months

Selection of 
candidates

(self perception)

Experience
phase

>6 weeks

Test environment

Databases

Hardware

Simulators

Adaptors

Test 
components

Test 
software

Comparators ...

Test 
configurationSystem under test

Figure 2: Test Architect (TeA) expert training – schedule

Figure 3: UML testing profile – Concepts of test environment and test configuration (see Reference 7)

PT - December 2016 - professionaltester.com 12

Test process improvement 



product lifecycle models), requirements 
engineering (e.g. non-functional 
requirements), architecture (e.g. 
systematic architecting, architectural 
views and documentation, architecture 
reviews, refactoring) and social skills, 
as well as cross-cutting topics (e.g. lean 
and agile development).

•  The expert training is a series of highly 
interactive workshops with project 
phases in between (see Figure 2): here 
the participants work on concrete tasks 
in their real-world projects to enforce 
learning, practicing and continuous 
improvement. At the end of the day it’s 
all about using and applying the right 
set of strategies, tactics, methods and 
techniques as a major lever to design, 
implement, execute and sustain your 
specific approach for better testing.

Outlook
A test architect (on eye level with the 
software architect!) can also be a new 
career path for testers but only if you as 
a test architect provide value and create 
impact on the business. Let’s continue our 
journey in this direction – at Siemens our 
target is to have nearly 50 test architects 
by the end of 2017 

If more hardware is involved than we also need system architects, but for 
simplicity, this article focuses solely on software architects.

References
[1] Page, A., Johnston, K. and Rollison, Bj. 2008. How We Test at 

Microsoft, Chapter 2. Microsoft Press, 2008.

[2] Page, A. 2008. What is a Test Architect?
http://blogs.msdn.com/b/alanpa/archive/2008/05/01/what-isa-test-
architect.aspx 

[3] Morrison, J. 2007. Test Architect. 
https://blogs.oracle.com/johnmorrison/entry/test_architect 

[4] Brewer, J., Guise, L. and Emmert, J. The Value of the Test Architect. 
Raytheon. March 2012. www.dtic.mil/ndia/2012TEST/13942_Brewer.pdf 

[5] ISTQB Glossary, Test Architect, http://www.istqb.org/downloads/glossary.html, 
https://www.astqb.org/glossary/search/test%20architect   

[6] Zimmerer, P. 2011. Architecture Testing @ Siemens. Workshop on 
Architecture-Based Testing at the Software Engineering Institute (SEI)., 
Pittsburgh, PA, US, 2011. https://saturnnetwork.wordpress.com/2010/11/23 
and https://saturnnetwork.wordpress.com/2011/02/22

 
[7] UML Testing Profile (UTP) Version 1.2. 2013. Chapter 8 “Test Architecture”, 

pp. 19-24. http://utp.omg.org/, http://www.omg.org/spec/UTP/ 

[8] Nishi, Y. Viewpoint-based Test Architecture Design. International Workshop 
on Metrics and Standards for Software Testing (MaSST), 2012.

[9] Eldh, S. 2015. Software Test Architecture. 2nd International Workshop 
on Software Test Architecture (InSTA), 2015. 
http://www.aster.or.jp/workshops/insta2015/ 

[10] Nishi, Y. Design principles in Test Suite Architecture. 2nd International 
Workshop on Software test Architecture (InSTA), 2015. 
http://www.aster.or.jp/workshops/insta2015/ 

[11] Bass L., Kazman, R., Clements, P. Software Architecture in Practice. 2012

[12] Paulisch, F., Zimmerer, P. 2016. Collaboration of Software Architect and 
Test Architect Helps to Systematically Bridge Product Lifecycle Gap. 1st 
International Workshop on Bringing Architecture Design Thinking into 
Developers' Daily Activities (Bridge'16), co-located workshop 
at ICSE 2016, Austin, TX, US, May 14-22, 2016

Peter Zimmerer is a principal key expert engineer at Siemens AG, 
Corporate Technology.

Test process improvement 
 

13PT - December 2016 - professionaltester.com  



Designing near-production 
test environments

PT - December 2016 - professionaltester.com 14

Testing improvements

Designing test environments can be a 
complex task, especially when considering 
how frequently their contribution towards a 
project's success can be underestimated. 
Testing environments lack an enshrined 
set of standards and the definition of 
something as fundamental as a near-
production environment can be 
changeable or vague. 

This article volunteers a vanguard 
definition of “near-production” and suggests 
a systematic approach in describing and 
managing test environments, as well as 
unifying various test environment concepts 
in order to facilitate their fair comparison. 

Cut through the complexities of 
constructing test environments to show 
a necessary near-production level.

Using this approach, 
designing test environ-
ments becomes feasible, 
describable and 
comparable.

Status quo
Organizations with legacy systems can 
sometimes suffer from missing standards 
to regulate their test environments, which 
can often cause them to descend into 
confusion and obfuscation over time. This 
is understandable in a subject as complex 
as test environments where such aspects 
as test data, data organisation, data 
simulation, user IDs, operational compo-
nents, interfaces and deployment must 
all be considered. 

Towering above all these considerations 
is the goal of having test environments 
as “near-production” – i.e. as similar as 
possible to the actual production 
environment – as possible to actually 
generate meaningful test results.  The 
exact definition of such an objective – 
to what extent test environment A may 
be more similar to production than test 
environment B – often remains nebulous, 
at best. In response to that, an unfortunate 
trend developed that has encouraged 
testing in the actual production 
environment. Adherents of the saying, 
“The only real thing is the real thing,” then 
find themselves following inefficient test 
strategies that, crucially, lose sight of the 
central project goal, which should be the 
earliest possible identification of errors. 

Environments in IT  -  standards 
Complexity may also be to blame for 
the relative neglect with which the term 
“environment” has been treated thus far 
by standard software literature. 

Reference 3 shows the definition of 
as taken from the ISTQB glossary (c.f. 
Reference 1) that cites the IEEE610 
standard, stating, “Test environment: 
an environment containing hardware, 
instrumentation, simulators, software 
tools and other support elements 
needed to conduct a test.” 

by Dr. Christian Brandes



 

 

 

between tests and environments can be 
obtained. 

This practical approach will prove more 
productive than the inverse scenario, in 
which constructing test environments 
precedes the planning of activities to 
pursue within them. Broadly put, it could 
be argued that one ends up having pro-
duced a solution to a previously non-
existent or improperly identified problem, 
resulting in a test environment without 
a specific purpose, which is then used 
arbitrarily. 

The journey from test objective via 
required near-production to the test 
environment
How does one go about translating 
the above proposition into practise? As a 
first step, all test activities must be listed 
and matched with their respective test 
objectives. The following table generally 
illustrates this point by enumerating some 
test activities and test environments. It has 
been purposefully complemented by items 
such as “production” and “training” in order 
to form a more rounded picture. 

The second step requires summing up all 
environment characteristics that have to 
be taken into consideration. A list of such 
characteristics can be produced pragma-

tically and iteratively, perhaps 
while consulting existing Configuration 
Management Databases (CMDB), if 
accessible. Apart from completeness, the 
granularity of these characteristics may 
raise their own issues, requiring separate 
considerations. Crucially, however, every 
relevant requirement of environment 
characteristics can be captured by 
the evolving scheme. 

The following lists instantiates a possible 
enumeration of these characteristics: 

• Hardware
- Server
- Client
- Storage
- Sizing
- Peripheries
- Network

• Software
- Server OS
- Client OS
- Databases
- Test object configurations

• Middleware
- Application server
- Enterprise service bus
- Batch controller
- Service balancer

Reference 2 explains that there are 
essentially three types of test enviroments: 
laboratories, system test environments and 
“near-production” environments. While all 
of this may be valid, it fails to be precise 
enough for a solid definition of “near 
production”, inasmuch as it is insufficient 
for the governance or management of 
test environments. Operational standards 
such as ITIL do not provide feasible guide-
lines for test environments, either. Even 
the oft-quoted TPI, when looking at test 
processes, does not disclose how well-fit 
test environments are to meet the 
necessary test requirements. 

“Near-production” as a central term
The concept of “near-production” can be 
refined by establishing its definition. 

Take, for instance, the environment 
characteristic “network bandwidth”. This 
characteristic is completely irrelevant for 
usability testing, or to execute a functional 
component test. If it is performance that 
one hopes to test, however, this environ-
ment characteristic suddenly becomes 
crucial. Accordingly, certain aspects of test 
environments can, at times, be parts of a 
“near-production” environment, while in 
other times they become irrelevant. At the 
root of this, lies the objective of the test 
activity in question, hence, the following 
definition can be derived: 

Near-production refers to those test 
environment characteristics that must 
imitate the actual production environ-
ment in order to reach a defined 
test objective.

“Test objective”, in this case, is understood 
as set forth according to ISTQB – see 
Reference 1. 

Using test objectives as a starting point 
leads to the following procedure: for every 
intended test activity, as associated test 
objective is set. The necessary “near-
production” environment can then be 
established. On that basis, the required 
test environments can be identified and, 
if necessary, linked up with each other, 
whereby a purpose-orientated mapping 

15PT - December 2016 - professionaltester.com  

Evaluation Free testing.

Development Coding.

Component tests Early identification of functional, robustness and 
performance errors.

Component integration tests Test of interfaces and cross -component
functionality.

Functional system tests Tests from the user’s perspective (regarding 
functionality, robustness, system interfaces).

 

Performance tests System test looking at performance and 
resource efficiency.

 

Usability tests Considers usability and accessibility.  

 

Functional acceptance tests Validation of acceptance criteria. 

 

Technical acceptance tests Test to establish the fulfillment of operational 
acceptance criteria.

 

System integration tests End-to-end test of important business processes.

Production Productive use of the actual system.

 

Training Training of follow-up, as well as current versions 
of test objects.

Failure analysis and re-test Reproduction of complex production-flaws. 
Proof of their redemption.

Testing improvements
 

(Test-) activity (Test-)objective
 



Bearing in mind our definition of “near-
production”, a “R” in the matrix signifies 
that the given environment characteristic 
must be reproduced as it is in the pro-
duction environment. Figure 1 gives an 
excellent example of such a matrix. 
It features a row labelled “production”, 
which refers to the production environ-
ment itself, in which every environment 
characteristic by definition is marked 
with a “R”.  

Identification of multi-purpose 
environments and their characteristics 
After completing the table with the help of 
the respective knowledge stakeholders, 
similar matrix rows can be included under 
common categories (clustering). 

Drawing from this, all necessary 
environments and their properties (super-
sets of required environment character-
istics) can be deduced. As a result, one 
may obtain environments such as:

• Development environment
• Integration environment
• Production environment
• Production mirroring

When looking at such results, it should 
be remembered that the characteristics 
of physical environments are taken into 

• Data
- Basic data (e.g. postcode catalogues)
- Historic data (e.g. existing customer 

data)
- Amount
- Accuracy

• Security
- Single sign-on
- Authentication server
- Encryption
- Certification

• Administration
- Deployment
- Maintenance downtimes
- User IDs

• Other 
- Internal partner systems
- External partner systems
- Multi-client capabilities
- Accessibility and personalization support
- Language services
- Run-time libraries
- Date/time simulations

On collating the information assembled at 
both stages – test activities/objectives and 
environment characteristics – a matrix 
emerges which provides the possibility of 
describing the degree of “near-production” 
per test activity in a straightforward manner. 

PT - December 2016 - professionaltester.com 16

Testing improvements

ACTIVITY Server Client
Sto-
rage

Peri-
pheri-
als

Net-
work

OS
Ser-
ver

OS
Client

Load 
balan-
cer

DB/
Cluster

Test
object/
config.

Base 
data

pre-
cond. 
data

amou
nt

up-to-
date-
ness

Deploy-
ment

partner 
sys-
tems

acces-
sability 
tools

down-
time

date 
simu-
lation SSO

Auth. 
Server

Evaluation O O O O O O O O O O O O O O O O O O O O O

Development O O O O O O R O O O O O O O O O O O O O O

Component tests O O O O O O R O O O O O O O O O O O O O O

Integration tests O O O O O O O O O O O O O O O R O O O O O

Functional system tests O R O R O R R O O O R R O O O R O O O O O

Performance tests R R R O R R R R R O R O R R O O O O O R R

Usability tests O R O O O O O O O O O O O O ? O O O O O O

Accessability tests O O O O O O O O O R O O O O O O R O O O O

Functional acceptance tests O R O R O R R O O R O O O R R R O R R R R

Technical acceptance tests R R O R O R R O R R O O O O R R O R R R R

System integration tests O O O O O O O O R O O O O O O R R O O O O

Production R R R R R R R R R R R R R R R R R R R R R

Training O O O R O O R O O O O O O O O R R O O O ?

Failure analysis & re-tests R R O R O O O R R R R R O R R R O R O O O

HARDWARE DATA OTHER (SECURITY, ADMINISTRATION...)SOFTWARE/MIDDLEWARE

Figure 1: Example of a completed near-production matrix

R = required



consideration. A physical environment 
generally serves as the basis for several 
virtual environments that can be located 
in the same physical environments at the 
same, or at different points in time - for 
example, an integration environment that 
temporarily serves as an environment for 
acceptance tests, and is later used for 
system integration tests. The topic of 
virtualization can be equally managed 
with the above scheme as it is similarly 
addressed by the question, “Is the 
respective test objective affected 
by the use of virtual machines?” 

Finally, it is crucial not to forget the 
most important motivation behind the 
reproduction of test environments: the 
need for multiple, different versions (of the 
same environment) to run simultaneously.  
Most test activities target the next version 
of the product as it is to be released. Due 
to processes like the analysis of production 
errors, or additional migration activities like 
database upgrades, however, there is a 
constant need for a test environment that 
represents the actual production environ-
ment. This demand must be recognized 
during the overall environment planning 
and design phase. 

Achievements
The table in Figure 1 constitutes the 
basis for establishing usage guidelines, 
management, planning and governance of 
test environments. Additionally, it opens up 
two lines of interpretation. Firstly, one may 
use it to determine what is tested where. 
Secondly, one may also derive the totality 
of all requirements to be fulfilled by a test 
environment. A similar table may be found 
within Reference 2, which seeks to relate 
topics such as test type, quality charac-
teristic and environment type to one 
another, but which does not seek to 
describe environment characteristics 
in detail. 

Furthermore, Figure 1 allows answers 
to be sought for more detailed questions. 
For instance, some would dismiss the 
use of automation tools within an 
integration environment due to its “near-
production” state, but this argument can 

now be proven invalid, especially if the use 
of automation tools does not jeopardise a 
given test objective. 

Additionally, this allows the focussed 
establishing of future tests within the 
most suitable environment. When met 
with a request like, “I am in need of an 
environment for …”, the test objectives 
and necessary near-production require-
ments can then be assessed. The profile 
which emerges will clearly determine the 
most appropriate test environment for 
any given test. 

Conclusion
Using this approach, designing test en-
vironments becomes feasible, describable 
and comparable. Newly emerging requests 
for additional environments can be catered 
to in a reliable and systematic manner. 
Moreover, all stakeholders are given a 
mutual voice, in that they are equipped 
with a shared understanding and common 
vocabulary to communicate. Finally, this 
approach is widely adoptable because 
of its simplicity, as it offers a chance to 
document diverging ideas about test 
environments in a collaborative and 
comprehensible fashion  

17PT - December 2016 - professionaltester.com  

Testing improvements
 

Dr Christian Brandes is a trainer and principal consultant for imbus AG in Germany.

References

1. ISTQB – Glossary of Testing Terms  (Version 2.1) 
www.istqb.org/display/ISTQB/Glossary+of+Terms 

2. Pol, M.; Koomen, T.; Spillner, A.: Management und Optimierung des Testprozesses 
dpunkt-Verlag, 2. Auflage, 2002, 2nd Edition (only available as e-book)

3. Spillner, A; Linz, T: Basic Concepts of Software Testing, (Volume 2) 4th Edition, 
dpunkt-Verlag 2010 



New Model Testing: 
A new process and tool – Part 1

PT - December 2016 - professionaltester.com 18

Testing improvements

This paper sets out some work I’ve been 
doing based on the New Model for Testing 
(see Reference 1). I have been investi-
gating the use of the New Model approach 
with a tool to support exploration and 
testing and want to share some findings 
and consequences of this work. I’ve 
created a partial, prototype tool that aims 
to support testing in digital, collaborative, 
shift-left, continuous delivery, DevOps 
environments. I’ve said before, “The old 
test methods won’t work in the future,” and 
with new thinking, the tasks of exploration 
and testing presumes the use of 
supporting tools. 

In the first of two articles, Paul Gerrard 
shares his experiments with the next 
generation of testing tools to encourage 
conversations about the future of testing. 

At least in the medium 
term, tools will support, 
rather than replace, 
testers.

Some interesting consequences arise: 
we need tools that differ from those 
currently available and the test process 
that emerges is somewhat different to 
what we are used to. This first article 
describes the goal and a proposed 
solution and tool architecture. The 
second article will be an experience 
report.  

If you are interested in collaborating, 
sharing these ideas and/or looking at 
the tool in the future, I’d love to hear 
from you. 

A hybrid test approach
Much has been said and written about 
the benefits of what is commonly called 
exploratory testing, but it remains that 
scripted or pre-planned testing has benefits 
too – and, of course, both have their draw-
backs. Although people get into heated 
arguments about whether scripts are a 
help or distraction, whether exploratory 
testing can be trusted to be thorough or 
whether test automation is testing at all – 
these approaches have their place. 

In Table 1, I have separated out the good 
and bad aspects of both approaches and 
the obvious question arises: is it feasible 
to combine the best of structured and 
exploratory testing and create a 
new test approach?

Table 1 generalises of course and you 
might challenge some of my suggestions. 
I have never believed the two approaches 
are “opposites” in some way. A rather 
better representation would be that they 
are styles of testing that differ in emphasis. 
Like the Agile Manifesto, it’s more a set 
of values/preferences that drive testers’ 
behaviour: 

• Differences in scale and duration
• Planned vs. improvisational

by Paul Gerrard



 

 

Bots support surveying and testing
I was inspired by the success of Google’s 
AlphaGo programme (see Reference 2) to 
look further into how artificial intelligence 
(a.k.a. machine learning) might replace 
testers. My conclusion was that, at least in 
the medium term, tools will support, rather 
than replace, testers (see Reference 3). 
With this background, I started to think 
about how a tool-supported hybrid 
exploratory/structured approach 
could work. 

Right from the start, I thought the best 
use of a tool would be as a “paired tester”. 
Pairing in testing can be highly effective, 
with two people working together, ex-
changing ideas and taking turns to “drive” 
the system under test (SUT). Could the 
bot listen to human speech, understand 
and speak back to the tester? I found some 
Python libraries that made incorporating 
both speech recognition (SR) and text-to-
speech (TTS) into programs quite easy. 
SR and TTS would allow the “bot” to 
communicate, but would it be possible 
for the bot to simulate a human tester? 

The bot needs to capture the voice of the 
tester and record narrative text for sure, but 
I also want to capture “structured” data that 
locates the testers in the SUT and record 
detail about system features, questions, 
ideas for tests and defect or bug reports. 

One of the problems I see with a lot of 
exploratory testing is that testers create 

mental models of the SUT, but they don’t 
usually capture those models in a reusable 
or shareable format (although mind maps 
are used by many people). The bot must 
create a system model which can be 
navigated and re-used. 

Obviously, the bot could not do everything 
a human pair can do. Certainly, the bot 
could capture an initial survey of the SUT 
and to capture the outcomes and inter-
pretation of tests. But a desktop or web 
application would be more appropriate 
for doing test design, management 
and reporting, of course. 

What also became clear was that the initial 
exploration of the SUT is a kind of survey. 
Surveying, as a metaphor for exploring 
and modelling (the left-hand side of the 
New Model) fits. It also avoids the confusion 
with “traditional” exploratory testing, so I 
will use the term “surveying” to reflect 
what testers do when they learn how 
the SUT should behave. 

Location hierarchy
Now, if the bot is to capture a model or – 
perhaps better – a map of the SUT, what 
should that map look like? The purpose of 
the map is to easily locate features of the 
SUT and to assign our notes, observations, 
questions and, of course, tests to 
identifiable places. Many testers find mind 
maps useful in this respect. A mind map is 
essentially a hierarchy, so I decided to 
capture the map as a hierarchy of locations. 

• Copious vs. light documentation
• Process and governance vs. agility 

and freedom
• Etc., etc. 

Obviously, there are many hybrid 
approaches, not just these two. 

New model testing 
The New Model suggests that testing 
is comprised of two activities and modes 
of thinking: 

1. Exploring our sources of knowledge. 
Requirements, specifications, users, 
developers, interviews, the old system 
and the new system (when available) are 
all sources. They are all fallible in different 
ways. To assimilate the information (to 
“understand” a requirement or feature) – 
from diverse, confusing and sometimes 
conflicting sources – we build mental 
models. 

2. Testing: When we trust that we 
understand a requirement or how a 
feature should work – that our mental 
model is sound – we use our model (our 
understanding) to inform our test design. 

The model (Figure 1) identifies ten 
thinking activities that mostly correspond 
with physical tasks. Note that the ten 
activities – enquiring, modelling, informing 
and so on – don’t have entry and exit 
criteria, a procedure or deliverables. 
They aren’t a process as such – each 
arrow represents the different modes 
of thinking that occur as we explore 
and test. 

Our brains are more sophisticated than 
we know, and it is clear that several of 
these thinking activities can take place 
simultaneously. Our subconscious often 
makes a large contribution to our 
thinking, of course. 

19PT - December 2016 - professionaltester.com  

Testing improvements
 

The good

 

The bad
 

• Systematic
•

 

Transparent, documented

 

•

 

Reviewable

 

•

 

Auditable

 

•

 

Repeatable, measurable

 

•

 

Automatable

 

• Agile (in the broadest sense)
•

 

Improvised, imaginative
•

 

Flexible and responsive to change
•

 

Faster, cheaper
•

 

More effective
•

 

Personally enjoyable

•

 

Inflexible, not responsive

 

•

 

Obsolescent/inaccurate 
documentation

 

•

 
Prone to biases, inattention

 

•
 

Outdated process
 

•
 

Expensive, inefficient
 

•  Unimaginative, boring  

•

 

Not repeatable
•

 

Not easily automated
•

 

Little or no documentation
•

 
Hard to manage

•
 

Hard to scale
•

 
Opaque

 

•  Not auditable, measurable.

Structured testing Exploratory testing

Table 1.  The good and bad of structured testing vs. exploratory testing 



a state model for the bot; there is a web 
interface to the schema server to maintain 
the state model. Note that, in principle, 
schemas for other applications are 
possible; for example, home 
automation/IoT.  

The bot downloads the schema from 
the schema’s server when it starts up. 
The schema is the configuration of the 
bot, instructing it to accept and act on 
some commands and not others, to call 
web services on the Cervaya server, and 
so on. The tester using a bot would not 
interact with the schema server. 

Cervaya bot client
The bot is a Python program that 
includes the Robot Engine (a Python 
module). There are two versions of the 
client program. One has a command line 
interface and the other manages the SR 
and TTS interfaces (see References 4 and 
5). The two interfaces are identical in their 
functionality: the command line accepts 
text commands; the SR interface 
accepts speech commands. 

Cervaya Server/Web Application 
The Cervaya server is a conventional 
website that hosts the web services used 
by the bot and a SaaS web application 
used to manage the data in the system. 
The web services provide simple enquiry, 
add and update facilities used by the 
Cervaya Bot Client. The web application 
manages user and team administration, 
projects, application models, environments, 
app versions, chartering and reporting. 

The location hierarchy has four levels 
within a SUT, as you can see in Table 2, 
below. Places are at the top level and 
Fields are at the lowest level.

Given this hierarchy, when a tester surveys 
and creates the map of the territory, they 
can log ideas, queries, observations or 
risks to locations at any level. The map 
and all the notes captured by testers are 
recorded and can be shared. Tests of forms 
use the form fields as placeholders for test 
inputs (and outcomes). 

Architecture
There are three main components 
of the tool, codenamed Cervaya.  

Schema Server 
This server maintains what is, in effect, 

PT - December 2016 - professionaltester.com 20

Testing improvements

Sources of
knowledge

Enquiring Modelling Informing Applying

ReportingModels are adequate

LoggingModels are not adequate

Challenging Predicting Refining Interpreting

System
under testExploration TestingModels

Figure 1. Ten thinking activities that correspond with physical tasks. 

Table 2. The four-level location hierarchy within a system under test

Place The highest level. Represents a sub-system, a module or component 

within the SUT.

Feature A feature represents an identifiable and piece of functionality that a 

user would recognise. It might be accessed through a menu option 

and could be a web page or mobile app screen.

 

Form

 

A form represents an executable transaction or action that can be 

tested independently. A feature such as a web site home page might 

have multiple forms on it. Note also that a form maps directly to a 

web service if you are testing through an API.

 

Field

 

A field is an observable place on a screen where a data item is 

displayed, and/or can be entered. Note the fields can be hidden or 

implicit (e.g. the content of cookies or database values). For the 

purpose of testing, form buttons and the outputs of a transaction or 

call to a service are defined as fields.
 



The web app gives the test team shared 
access to the system model, all notes, 
queries, tests and results. It also provides 
some simple graphical navigation facilities, 
in particular, a navigable hierarchy of 
locations in the system model. 

Summary
Testers can create, manage and share 
a system model. The testing bot supports 
system surveys which means that the 
system model and all notes, queries and 
defects can be captured using just voice 
commands. Although tests can be captured 
as narrative text descriptions using the bot, 
the web application can be used to capture 
full test case definitions for documentation 
purposes (with the potential to export test 
automation scripts). 

Speech recognition is implemented using 
the Google Speech Recognition API (see 
Reference 6). Although it is easy to set up, 
it can be very slow to respond. Also, 
although it works well in quiet room, in a 
normal office environment it makes far too 
many errors. We intend to replace the bot 
and Google API with an Echo Dot (see 
Reference 7). The Echo Dot hardware and 
the Alexa AI services from Amazon are 
easy to set up and use. It is accurate and 
fast, even in a noisy environment. The 
Alexa voice recognition API can be 

configured to have pre-defined “skills” that 
interact with public web services. We will 
use an Echo Dot as the user interface 
to the bot. 

This article introduces the New Model 
for Testing and an architecture for a bot-

21PT - December 2016 - professionaltester.com  

Testing improvements
 

Paul Gerrard is principal consultant at Gerrard Consulting.

References

1. New Model for Testing, Paul Gerrard, http://dev.sp.qa/download/newModel

2. Match 5 - Google DeepMind Challenge Match: Lee Sedol vs AlphaGo, 
https://www.youtube.com/watch?v=mzpW10DPHeQ (final game, award ceremony, 
press conference)

 
3. The Future of Tools in Testing, https://tkbase.com/resources/viewResource/14 
4. https://pypi.python.org/pypi/SpeechRecognition/

5. https://pypi.python.org/pypi/pyttsx

6. https://cloud.google.com/speech/

7. Amazon Echo Dot, https://www.amazon.co.uk/Amazon-Echo-Dot-Generation-
Black/dp/B01DFKBL68

Figure 2. The architecture of the Cervaya Bot 

robotschemas
cervaya

Schema server

Cervaya bot client

Cervaya server

Robot engine

Speech
recognition
interface

Command
line

interface

Schema 
manager
(website)

Applications
(website)

Many app servers
one (or many) 
per schema

Application reporting,
monitoring, control,

management

Perform robot
actions through

services

Administer schemas
through the web

Download
schema

Schema 
repository

(web service)

Actions
(web service)

supported test process. The second 
article will describe how the prototype 
bot we’ve created can be used in practice, 
and how the test process is affected. I will 
suggest how we need to change our test 
process to take advantage of a robot 
test partner 



Testing Talk

Anthea Whelan asks Andreas Golze, 
passionate fan of DevOps, about the 
enhancements that accompany 
embracing this approach. 

Integrating the complete 
non-functional testing 
phases into the overall 
process is seen as a core 
best-practice. 

Who should be interested in embracing 
DevOps?

That sounds like a challenging leap 
for some companies to make. What’s 
stopping them?
 

What would you advise as a good first 
step, for those wishing to make the leap?

 

Large enterprises, in particular, but any 
business that requires faster releases, with 
good feedback – those that are struggling 
to implement effective communication and 
collaborations between their IT and 
business teams. 

By emphasising “people and culture”, 
DevOps instigates a cultural shift that 
requires a balance between the current 
market perception of an organization and 
how the business is envisioned in 
the future. 

As more and more companies are seeking 
to provide digital offerings as part of their 
product suites, speed of deployment 
becomes a correspondingly important 
factor. Businesses born in the cloud era 
are automatic adopters of DevOps, a 
culture of practices that matches their 
DNA. Older businesses, with their more 
siloed practices, have more legacy systems 
they depend upon, some of them extremely 
complex, isolated and bound to their own 
protocols. Coupled with long-defined 
development, operations and testing 
processes and practices, it can be 
difficult to meet the varied needs 
of modern enterprises. 

Continuous Testing (CT) should be adop-
ted without delay. It provides continuous 
feedback that drives software delivery 
through the entire development cycle. 
Automated feedback at each checkpoint 
works like a feeding mechanism for the

PT - December 2016 - professionaltester.com 22

Interview



  

 

What about non-functional testing? 

 

There are known challenges for integrating 
non-functional tests into the CT process. 
Load testing, for instance, raises the issues 
of non-availability of dedicated servers to 
generate the desired user load, or capacity 
constraints impacting the ability to scale 
the CT environment and sustain the size 
of load tests, or a lack of on-demand 
tools to identify the bottlenecks.

Again, cloud-based infrastructures 
allow organizations to make effective 
use of available resources and establish 
the capability to run these load tests 
on-demand, plus tools such as Apache 
JMeter are quickly emerging as invaluable 
for performance testing by organizations 
using DevOps practices. 

It is the core philosophy of CT processes 
to test every single change made to the 
application, as early as possible. If non-
functional tests are not included in the 
overall CT process, the organization is 
only solving part of the puzzle. If these 
issues are not tested for and identified 
as early as possible, it may affect impro-
vements in functionality, and those may 
not be reversible. You could put your entire 
release schedule in jeopardy. Integrating 
the complete non-functional testing 

What are the DevOps habits of the most 
effective businesses?

phases into the overall process is 
seen as a core best-practice. 

Agility in the ability to execute tests is 
the key to successful CT. New techniques 
in test data management and service 
virtualisation are emerging all the time 
and can only enhance the effectiveness 
of DevOps. Automated processes which 
are also providing meaningful metrics. 

Enhancing an existing DevOps set-up by 
driving automation through open source 
tools, or by using a flexible commercial tool 
that integrates well with both upstream and 
downstream activities. Some have found the 
“Monday to Friday – Weekend” model quite 
effective, where teams focus on continuous 
quality via greater automation during the 
weekday build and test phases, while 
running automated regression tests for 
the final QA tests over the weekend. 

A well-implemented DevOps strategy 
complemented by an intelligent test 
automation framework puts businesses 
in a strong position to benefit from the 
effective colla-boration between all 
of their information technology 
professionals 

next process in the delivery chain, if the 
feedback says to move forward. 

If the feedback does not say to move 
forward, then the entire process can be 
immediately halted so corrective measures 
can be taken. 

Also, the automation code base should be 
treated just like an application code base – 
it should reside in its own version control 
repository. The automation suite must be 
integrated with the build deployment tool. 
This enables centralised execution and 
reporting. 

If the automation suite is then categorised 
into layers of automated tests – build test 
runs; health checks; smoke tests; full-scale 
regression tests – then regression exe-
cution can be carried out overnight, 
depending on how frequently you want 
to put out a build, or during the weekend 
if you find that the CT setup is becoming 
less effective due to longer 
feedback cycles. 

That all sounds just a little too easy! 
Automate everything and it will all 
work out? 

 

No, of course not! There are always 
challenges. Some tests built on commercial 
tools can often slow down over time due to 
tool architecture. Also, automation is often 
built using different tools – one for user 
interfaces; one for APIs and mobile 
coverage, for example. 

There are workarounds, however. Existing 
automation and migration tests should be 
executed using more open source tools, 
such as Selenium, which automates web 
browsers across many platforms. This 
helps to further enhance the effectiveness 
of DevOps and ensure it is more integrated 
with development tools.

Andreas Golze is the VP of Quality Engineering and Assurance for Europe at 
Cognizant. 

23PT - December 2016 - professionaltester.com  

Interview
 



www.professionaltester.com

Happy 
NewYear

With thousands of subscribers, make sure 
that your solution is showcased in 2017.

On behalf of our contributors and our staff
we wish you a

E s s e n t i a l   f o r   s o f t w a r e   t e s t e r s
TE TER


