
Hier soll der Titel rein Testing properly – Testing what matters 

www.qs-tag.de 

Organisator: imbus AG  www.qs-tag.de 

Test Driven Development: 
Requirements and Test Design 

Gregory Solovey 

Company 
Logo 



Introduction 
–  goal, objectives 

Part 1. Test-Friendly Requirements 
–  attributes of ideal tests 
–  attributes of ideal requirements 
–  insist on ideal requirements 

Part 2. Embed Test-Friendliness 
–  examples 
–  exercises 

 

Agenda 



 
 

Introduction 

t 



Test Automation Processes 



Our ultimate goal is to deliver products with zero 
implementation defects. 
 
Usual attributes of requirements’ quality are their 
completeness and consistency. 
 
This presentation emphasizes the requirements’ 
testability aspects – properties that allow them to be 
completely and efficiently tested.  
 

Goal 



We can never be sure that the requirements are correct and 
we can never be sure that their implementation is correct. 
 
But it is absolutely certain that testable requirements save 
enormous effort and time to verify the code and maintain the 
tests. Moreover, when continuous delivery is in place but the 
code quality is poor, the testware quality can only be improved 
in the presence of requirements’ testability.  
 
Requirements’ testability makes it possible to: 
• design tests in a day 
• find all implementation errors 
• maintain the test mapping with the requirements 

Objectives 



 
 

Part 1  
Test-Friendly Requirements 

 

GOAL 



A Google search on “requirements testability” will 
return the following criteria: 
 

Atomic, Complete, Consistent, Controllable, 
Formalized, Non-Conjugated, Observable, 

Quantitative, Traceable, Unambiguous, Unitary 
 

The common sense definitions of these criteria are 
not always obvious guidelines for creating “testable” 
requirements. We will attempt to present such 
guidelines (the devil is in the detail). 

Ideal Requirements 



First, we will define what an “ideal test” is - what are 
its attributes and constraints. 
 
Next, we will infer the attributes and constraints of 
requirements which support ideal tests. 
 
Last, we will discuss how to create, verify, and 
implement ideal requirements.  

From Test to Requirements  



1. Complete 
1.1. contains clearly set pre-conditions, stimuli, and expected results  
1.2. covers all requirements 
1.3. covers all implementation errors 

2. Effortless to create  
2.1. uses known test design methods 
2.2. uses manageable model sizes 

3. Reviewable 
3.1. supports the test object hierarchy, to reduce the complexity 
3.2. mirrors the requirements structure   

4. Executable 
4.1. is controllable: can be initiated from external interfaces 
4.2. is observable: the execution results are accessible 

5. Maintainable 
5.1. initiates a single testware update for a single requirement change 
5.2. is traceable to requirements to support debugging 

  

Ideal Test  



1.1. Contains clearly set pre-conditions, stimuli, 
and expected results  
  
   
  

 

Complete 

Top down object description  
The requirement document should 
present the forest before zooming-in on 
the trees (deductive approach). The 
documents should be presented from 
higher to lower levels of abstraction, i.e. 
from business logic to implementation 
details. In this case the pre-conditions 
can be inferred from the path and 
position of the particular requirement in 
the document hierarchy. 

Unambiguous 
Each requirement 
should allow to clearly 
define the expected 
results. 



Complete 

1.2. Covers all requirements 
 
Traceable   
Implement tagging for each requirement. The tags can then be 
included in the tests, to link them to the requirements. This allows 
to calculate the requirements coverage. 



Covers all implementation errors 

1.3. Covers all implementation errors 
 
Use known software models 
A test is designed to uncover an error. Errors are well defined for 
formal models (UML-like). If a system component is described 
informally in business terms (in spoken language), only a subject-
matter expert can define the associated tests. However, the 
completeness of such a test cannot be proved. The completeness 
can be achieved only for a test built to cover all conventional 
errors of a formal model. There are a few types of commonly used 
formal models: 
• Structural models: object attributes, configurations, formats,  

interfaces, messages 
• Behavioral models: use cases, algorithms, state machines, 

sequence diagrams  



Complete 

1.3. Covers all implementation errors 
 
Use known software models 
Once the models are identified, we can identify the 
implementation error classes. 

All implementation errors fall in the “swap” category, where 
one of the object’s elements is inadvertently swapped with 
another element of the same type. Such errors cannot be 
detected by a syntax analyzer. 

For known software models there are known test design methods 
that guarantee the minimum set of test cases that can detect all 
known error classes. 
 
 
 



Complete  

1.3. Covers all implementation errors 
  
• Arithmetic expressions: α + β  
 Error Model: α  β, α  constant; ‘+’  ‘-’ 
• Relational expressions: α == β  
 Error Model: α  β, α  constant; ‘==’  ‘<=’  
• Logical expressions: α ∧ β  
 Error Model: α  β, α  constant; ‘∧’  ‘∨’ 
• Algorithm: a set of functional and conditional blocks and the 

connections among them.  
 Error Model: expression and connection errors 
• State Machine: a set of states and a set of events that transfer 

control between states and generate outputs.  
 Error Model: transfer and output function errors 
 
 
 
 



Effortless to Create  

2.1. Uses known test design methods 
2.2. Uses manageable model sizes 

 
Limit model size 
In the software testing world, in contrast with VLSI, the automation of test 
generation is very rarely used. Therefore, independent software 
components have to be reasonably sized for manual test creation. The 
size of a requirement that a tester can analyze independently might be 
limited to approximately ten objects: states in a finite automaton, "if" 
statements in an algorithm, objects and methods in an OO model, 
message exchanges in a sequence diagram, elements of GUI, etc. The 
approach is to "divide and conquer". If the subsystem description is much 
bigger than the “desired” size, then some elements (nodes of state 
machine, algorithm blocks, message sequence, etc.) have to be 
combined in separate units and presented as children requirements.  
 
 



Reviewable 
3.1. supports the test object hierarchy, to reduce the 
complexity 
3.2. mirrors the requirements structure 

 
Top-down hierarchy of software models 
Limit model size to 10 elements 
It should be possible to evaluate the completeness and 
correctness of the test in the limited time of a test review. To do 
this, the hierarchy of test cases should to be mapped directly to 
the requirements, which are presented as a top-down hierarchy of 
software models. 
Moreover, each model should consist of no more than 10 
elements, to make it easy to “absorb” and validate the respective 
test set in real time. 
  
 
 



Executable 
4.1. is controllable: can be initiated from external interfaces 
4.2. is observable: the execution results are accessible 
  
Test harness - input to design document 
Each test case must comply with the testability prerequisites, namely 
controllability and observability. Each test case should be able to be 
launched from an external interface (accessible by the tester) and the 
results of its execution should be available for a verdict. However, the 
nature of the object-to-test (especially for embedded systems) is that 
sometimes there is no direct access to APIs, messages and internal 
attributes that are necessary to execute the test. 
A test harness is a set of "instruments" that provides the ability to access 
APIs, test functions, database content, or to send messages. A test 
harness can be implemented as a set of CLI commands, GUI objects, or 
http requests.    
  
 
 



Executable 
4.1. is controllable: can be initiated from external interfaces 
4.2. is observable: the execution results are accessible 
  
   
 
 



Executable 
4.1. is controllable: can be initiated from external interfaces 
4.2. is observable: the execution results are accessible 
 CLI access  
   
 
 



Executable 
4.1. is controllable: can be initiated from external interfaces 
4.2. is observable: the execution results are accessible 
  
 
HTTP access 
Structure a url as a RESTfull API: 
http://<object>.com:10080/<appl>/<api_name>/<parameter>?token=<value>  

 
DB access 
Define keywords which are translated into SQL queries, from 
templates stored in libraries. Provide connection to the database 
and return results to the user interface. 
  
   
 
 

http://ci-lte-enodeb.fr.alcatel-lucent.com:10080/lte_enodeb/job/LL13MT-MNCL-PLTF-MAIN-%20SANITY-METRIC-START-metro/
http://ci-lte-enodeb.fr.alcatel-lucent.com:10080/lte_enodeb/job/LL13MT-MNCL-PLTF-MAIN-%20SANITY-METRIC-START-metro/
http://ci-lte-enodeb.fr.alcatel-lucent.com:10080/lte_enodeb/job/LL13MT-MNCL-PLTF-MAIN-SANITY-METRIC-START-metro/build?token=metro


Executable 
4.1. is controllable: can be initiated from external interfaces 
4.2. is observable: the execution results are accessible 
 
Recommendation for test harness implementation 
• Access all object APIs: create, activate, discover, delete, 

send, etc 
• Print the states and values of the object or group of objects in 

TLV, Json, xml format  
• Provide routing to a particular harness command, using UNIX-

like syntax (“cd”, “ls”, “help”, “show”) 
• Report errors using a predefined syntax 
• Redirect system messages to the external interfaces  
• Do not perform any checks other than syntax 
• Return acknowledgement and completion messages for all 

harness commands     
 
 



Maintainable 
5.1. initiates a single testware update for a single requirement 
change 
5.2. is traceable to requirements to support debugging 
 
Traceable 
Using tagged requirements will speed-up debugging and defect 
creation. 
 
Avoid model duplication 
The models and their elements used by other models (for 
example messages or algorithms) should be uniquely defined. All 
models that need to reuse a particular element should reference it 
through the requirement tag. This ensures that only one set of test 
cases will be created. Any changes in the model will trigger the 
respective testware changes in a single place.    
 



Summary - Ideal Requirements 

• Present an object as a top-down hierarchy of software models as deep as 
necessary, where an element of the model can be elaborated by another 
model. 

• Each model is to be presented in a clear and unambiguous manner, using 
UML-like models, such as use case, algorithm, state machine, sequence 
diagram, syntax, condition, etc.   

• Include each model into a requirement as an mandatory section. Optional 
sections may include informal descriptions of the functionality, pre-conditions, 
triggers, post-conditions. 

• Identify each requirement in the document with a unique tag.  
• Use references to existing models instead of duplicating them.  
• Each model should consist of no more than 10 elements, which is practical for 

manual test generation. 
• Only the requirements’ model sections will be developed as code and tested.  



Object 
 

Modern software is architected as  
layered (often embedded) systems. 
Lower layer modules provide services 
to the higher layer ones.  
 
Similarly, a requirement document 
should first present the scenarios of the 
higher layers, and then with each layer, 
increase the level of detail by 
specifying the structure, functionality 
and implementation details. 

Object to be developed 

Higher level entities 

Low level entities 

APIs Messages 

System  
settings Faults 



Model Hierarchy 

Higher level entities 

Low level entities 

APIs Messages 

System  
settings 

Faults 

 

IQXC 

(1) SCN E/NA/NA 

(2) framer reset (link) 

TU 

(1) ACN (PhaseEnable) 

CPRI Driver 

if (SelfTest [GRro] eq "PASS" and SelfTest[SEro] eq "PASS 
and SelfTest[PTMro] eq "PASS“)   
 



[image: image1]

IQXC







(1) SCN E/NA/NA







(2) framer reset (link)







TU







(1) ACN (PhaseEnable)







CPRI Driver













Requirement Hierarchy 

 

IQXC 

(1) SCN E/NA/NA 

(2) framer reset (link) 

TU 

(1) ACN (PhaseEnable) 

CPRI Driver 

Req QWE_324 

Model 
Triggers 

Description 
Pre-conditions 

Post-conditions 

Req QWE_334 

Model 
Triggers 

Description 
Pre-conditions 

Post-conditions 



Document Formats 

Should we use general document formats (Word, Acrobat, 
PowerPoint) or use specialized tools (No Magic MagicDraw or 
Rational Rose Modeler)? 
 
When using general format documents, the test-friendly 
requirements guidelines have to be reinforced during the 
review. 
 
Even modeling tools do not support the complete set of 
guidelines. 
  
 



Model Hierarchy – Nokia  

Let’s take a look at an approach using MagicDraw. 
 
• 1st level: Use case diagram: describes the main 

functionality based on customer requirements 
• 2nd level: Activity diagram: describes the functionality as 

algorithms and/or state machines 
• 3rd level: Lower level activity diagram: describes elements 

of the 2nd level activities in more detail 
• 4th level: Sequence diagram: describes the interactions 

between components of the 3rd level during the execution 
of an activity 

• 5th level: Individual activity diagram: describes the behavior 
of 3rd and 4th levels’ components .  



Model Hierarchy – Graphical View 



Document Tools 

“ … So we created 
a hairy billiards ball, 
now let's think how 
to use it…” 

Modeling tools are better than general-purpose document tools. However, 
they do not support the testability guidelines out of the box.  



A Tool is not a Panacea 

Out of the box MagicDraw still allows to: 
• define models outside a top-down hierarchy  
• present a model as plain English text, for example, in the 

functional box of an activity diagram, the comments 
section, or the requirements table, etc.   

• have a model without a unique tag 
• use multiple copies of unique models 
• have models with unmanageable numbers of elements 

 
Of course, it is possible to create verification rules in 
MagicDraw to enforce the guidelines. However, the point is 
that, without additional customization, none of the tools 
explicitly support Test Friendly Requirements guidelines.  



Unmanageable Model Size 

Unconfigured

Failed

Configuring

Up

Down_Dependency

Up_Degraded

cpCanProvideService

cpCanProvideFullService

Created

Down_Oos

cpIsAdminDisabled

InTest_Sa

Resetting

Terminating

Not_Installed

Wait_Enable

InTest_Nsa

Wait_Config

cpIsMngdRsrcOos

t_Cnfg

t_UpOrDown

t_UpOrDown

True

True

t_Initial

t_Failed

False

False

t_UpOrDown

t_Failed

t_UpOrDown

t_Reset

t_UpOrDown

t_Reset t_Reset

t_UpOrDown

t_UpOrDown

t_Failed

t_Uncfg

t_Reset

t_Test_Nsa

t_Test_Nsa

t_Failed

TERMINATE_REQ

t_Wt_Cnfg

t_Cnfg

t_Test_Sa

t_Failed

t_Reset

t_Uncfg

t_Uncfg

t_Failed

t_Test_Sa

t_Failed

t_Ni

t_Ni

t_Wt_Enable

t_Reset

t_Failed

t_Failed

t_Failed

t_Failed

t_UpOrDown

False

False

True

True

t_Test_Sa

t_Failed

t_Reset

t_Reset

t_Reset

t_Failed

t_Ni

cpCanProvideService

cpCanProvideFullService

cpIsAdminDisabled

t_Cnfg

t_UpOrDown

t_UpOrDown

True

True

t_Initial

t_Failed

False

False

t_UpOrDown

t_Failed

t_UpOrDown

t_Reset

t_UpOrDown

t_Reset t_Reset

t_UpOrDown

t_UpOrDown

t_Failed

t_Uncfg

t_Reset

t_Test_Nsa

t_Test_Nsa

t_Failed

TERMINATE_REQ

t_Wt_Cnfg

t_Cnfg

t_Test_Sa

t_Failed

t_Reset

t_Uncfg

t_Uncfg

t_Failed

t_Test_Sa

t_Failed

RO MAIN FSM
t_Ni

t_Ni

cpIsMngdRsrcOos

t_Wt_Enable

t_Reset

t_Failed

t_Failed

t_Failed

t_Failed

t_UpOrDown

False

False

True

True

t_Test_Sa

t_Failed

t_Reset

t_Reset

t_Reset

t_Failed

t_Ni

This “Resource Object” state diagram has 15 states, 4 decision blocks, 75 
transitions with conditions. Testing will require more than a thousand test 
cases, and the review of their completeness is not feasible. 



Review Processes 

Requirement
creation 

         Unit test development 

       Test debugging Test automation 

Design  
creation 

Test Plan  
creation 

Requirements 
review: 
Unit identification, 
formalization and 
testability Test Plan review: 

Test completeness 

Design review: 
Test harness 
planned & syntax 

Code submission 
Test Script delivery 

Test Script review: 
Test readability 



Requirements Review Process 

During the requirements review testers should verify that the 
document complies with the test-friendly guidelines: 
 
• the document is presented in a top-down hierarchical 

structure. 
• the document is split into tagged requirements. 
• the model section of the requirement description is 

presented as a known software model. 
• models have acceptable sizes. 
• each requirement has five sections: definitions, pre-

conditions, triggers, model, and post-conditions. 
• all object attributes, messages, and APIs are accessible 

from external interfaces. If not, request should be made to 
developers to implement. 



Design Review Process 

Developers should implement a test harness prior to testing. 
This requires that additional time be allotted in the project 
plan. Based on our observation, the overhead is 
approximately 5%. Developers always dedicate time to 
incorporate hooks, simulators, code traces in order to execute 
their unit test. The same debugging code can be reused as a 
base for the test harness.  
 
Note that the test harness has to be defined during the 
requirements review and it has to be available at code 
submission time. 



Test Plan Review Process 

Reviewers should make sure that tests: 
  
• mirror the structure of the object-to-test 

(hierarchy of models). This simplifies 
the test maintenance and reduces the 
time to find errors. 

• cover all implementation errors. This is 
done by checking that known test 
design methods are used.  

Test Set (architectural-level sub-system, for example) consisting of  
   Use Cases (a scenario of the sub-system), where each use case consists of  
      Test Cases (verification points of a scenario), and each test case consists of 
          Test Actions (a single communication act with the object-to-test).  



Quality Monitoring 

A system is as good as its weakest link. It is important that 
organizations monitor the test quality by employing 
dashboards that present the following quality metrics (at the 
release/project/feature level): 
 
• Requirements’ test-friendly format usage 
• Requirements’ coverage by tests 
• Test harness implementation by development groups 
• Implementation error coverage by tests 
• Test coverage by automation 
• Code coverage by automated tests 
 



Quality Dashboard 

Requir
ement

s 
review 

tr
ac

ea
bi

lit
y 

fo
rm

al
-a

bi
lit

y 

Test Plan 
review 

tr
ac

ea
bi

lit
y 

te
st

ab
ili

ty
 

co
m

pl
et

en
es

s 

Desig
n 

review 

te
st

ab
ili

ty
 

un
it 

te
st

 

Test  
review 

ex
ec

ut
io

n 

gc
ov

 

Appl 1 

Appl 2 

Appl 3 

Appl 4 

Appl 5 

Appl 6 

Select to 
compare FIDs Select to 

compare 
technologies 

Select to 
compare 

applications 

OSs 

Browser 
FID 252 

FID 345 

Config 

Devices 

FID 297 

FID 985 

FID 176 

FID 418 

FID 274 

FID 518 

FID 273 

LS14.1 

LR14.3 

LR15.1 

Select to 
compare 
releases 



 

Part 2 
 Embed Test-Friendliness 

GOAL 



Not So Friendly Requirement 

Theoretically, an architect, developer, and tester need to prove requirements completeness and consistence, but, practically, each have different objectives during the requirements review process. An architect’s main goal is to check the completeness of requirements, their consistency, and how they reflect the customer expectations. The developer tries to make sure that there is enough data to Verify that all attributes, messages, and commands are acceptable from external interfaces. If that is not the case, make notes to request access to pre-conditions and triggers in the Test Plan as a test harness, which should then be implemented by the developers. 1.Verify that the model section of the requirement description is presented as one of the traditional software models: state machine, ladder diagram, algorithm, syntax, instruction set, etc. 

<Start Requirement ABC_456> 

<Finish Requirement ABC_456> 



Plain English 

The attribute BIST_RESULT (Self Test Result) represents the aggregated initialization 
results (PASS/ FAIL) from all of the drivers managed by the TimingUnit.  
---------------------------------------------------------------------------------------------------------- 
on the ES interrupt, the X_Monitor performs a “double reading” of the TOD (Time Of the 
Day) to recover the GPS TOD for the next ES.  It means the X_Monitor reads the framer 
register of HSIQ driver with framerid#0 on this ES interrupt and repeats the reading on 
next ES interrupt to confirm the accuracy of the HSIQ TOD.  If confirmed, GpsTime TOD 
on last ES is initialized and Linux timestamp is memorized. 
On each next following ES interrupt, GpsTime TOD on last ES is incremented by two and 
Linux timestamp is memorized again. To maintain synchronisation between GpsTime TOD 
and HSIQ TOD, every hour, on an ES interrupt, the X_Monitor repeats the “double 
reading” of the HSIQ TOD.  If HSIQ TOD is consistent, and different from GpsTime TOD 
on last ES, the GpsTime TOD is reinitialized to the new value. In case of failure of HSIQ 
links, HSIQ TOD is no more available but GpsTime TOD on last ES is still available, it is 
incremented by two on each ES interrupt.  When HSIQ TOD is available again, a 
synchronisation to HSIQ TOD is performed.  
--------------------------------------------------------------------------------------------------------- 
The requirement is vague: What are the drivers? Do all drivers count? How to simulate 
“fail” driver self test verdict?  
The description is in plain English. None of the architects/ developers/ testers were able to 
explain this description without looking at the source code.     



Models Mix 

The attribute CLOCK_DELAY specifies the delay in the link between the NODE 
input, and its clock source. It allows the NODE to compensate for this delay and 
achieve a more accurate phase alignment when <CLOCK> is the synchronization 
source. Once get the message and the current sync source is <CLOCK>, the NODE 
shall send SYN_DELAY_COMPENSATION to drvSyn for the delay compensation. 
Once there is clock switch, NODE shall stop the drvSyn to stop the delay 
compensation. 
---------------------------------------------------------------------------------------------------------- 
The fault FAULT_GPS_RECEIVER_FAIL is raised by the TimingUnit if GPS is in the 
sync source list and the TimingUnit receives this fault from the GPS indicating that 
there is a communication failure to the GPS receiver. This is of major severity and 
causes TimingUnit to transition to “Enabled / Degraded” state.  Additional info field 
should be filled with the content of the additional info field from GPS fault notification. 
The fault can also be generated by TimingUnit directly, when it detects that current 
protocol is mismatching with provisioned priority list.  
--------------------------------------------------------------------------------------------------------- 
The object description (an attribute, a fault) and the model (scenario/algorithm), 
where this object is used have to be separated. Without the full context, it is 
challenging to understand how the action has to be taken, what are the values to set 
and how to verify them. The tester should not have to piece together an algorithm 
from pieces found in different object descriptions. 
 



Vague Descriptions 

 
“...Its responsibilities include, but are not limited to...” 
“...performs timely switch...” 
“…achieve a more accurate phase alignment…” 
“…most likely in 20-40 seconds ranges...” 
--------------------------------------------------------------------------------------------------------- 
 
The description is vague. 
 



Attempt to Implement 

Arthur Schopenhauer 
“Alle Wahrheit durchläuft drei Stufen. Zuerst wird sie lächerlich gemacht 
oder verzerrt. Dann wird sie bekämpft. Und schließlich wird sie als 
selbstverständlich angenommen.” 
 

Stage 1 - ridiculed 
“Testers’ prerogative is to learn the business and technology in order to verify their 
implementation, not to dictate to us how to change the documentation culture”. 

Stage 2 - violently opposed 
“We (system engineers and architects) are the experts, and we know that too 
much formalization and formatting will dramatically slow down the requirements’ 
delivery”. 

Stage 3 - accepted as being self-evident 
“This is well known stuff and we already monitor traceability, conduct reviews and 
use UML models where possible”. 



The following are required to implement complete test: 
 
1. Support of other non-test groups: architecture, 

development, release management and quality   
 

2. Authority to request support from other groups 

 

Implementation 



Instructions 

For the purposes of this exercise we will use simplified instructions: 
 
• Describe an object as a top-down hierarchy of software models, as 

deep as necessary, where an element of the model can be elaborated 
by another model. 

• Each model is to be presented in a clear and unambiguous manner, 
using UML-like models, such as use case, algorithm, state machine, 
sequence diagram, syntax, condition, etc.   

• Each model should consist of no more than 10 elements 
 
 
We add one more rule to clarify the meaning of “as deep as necessary”: 
 
• The process of model elaboration should stop at the level where 

programming language data structures are specified (arrays, hashes, 
pointers, DB schemas, etc). 



 
 

Examples 
 

GOAL 



Triangle Example 

A function that reads three numbers that are the lengths of triangle edges 
and returns the triangle type. 
 
Iteration 1: informal requirements 
 

A script reads three numbers that are the lengths of a triangle’s edges and 
returns the triangle type. 
 
No initial data boundaries and possible outputs are specified 
 

Iteration 2: informal requirements 
 

A script reads three numbers whose value is less than 30, representing the 
lengths of a triangle’s edges, and returns one of four messages: “These 
numbers cannot form a triangle (not a triangle) - NT”; “equilateral triangle - 
ET”; “isosceles triangle - IT”; “regular triangle -RT”.  
 
No algorithm is specified 
 

   



Triangle Example 

a< b+c and  
b< a+c and  

c< a+b 

a = b a = c 

b = c b =c  

Not a 
triangle (NT) 

Equilateral 
(ET) 

Isosceles 
(IT) 

Regular 
(RT) 

0 

2 

1 

1 

1 

1 

0 

0 

0 0 

Enter a, b, 
c 

1 

5 3 

4 

1 

Iteration 3: formal requirements • Model is incomplete – there 
are no blocks that verify the 
number and types of input 
values.  

• Model is way too big - 
includes more than 10 
elements.  



Triangle Example 

Req # Model 

Req_1  Model: algorithm of black boxes 
If ((side’s boundary conditions incorrect::req_2) OR (sides cannot form a triangle”::req_3)) {       
    print NT; 
} elsif (a triangle is equilateral            ::req_4) { print ET; 
} elsif (a triangle is isosceles              ::req_5) { print IT; 
} else {    print RT; } 

Req_2 Model: syntax of application attributes  
• There are three mandatory attributes of the application 
• Each attribute type is a digit 
• Each attribute is a positive number 

Req_3 Model: a condition on the values of three sides of the triangle  
 ((a< b+c) and (b< a+c) and (c< a+b)) 

Req_4 Model: a condition on the values of three sides of the triangle  
 ((a=b) and (b=c)) 

Req_5 Model: a condition on the values of three sides of the triangle  
 ((a=b) or (b=c) or (a=c)) 

Req_6 Model: syntax of output messages 
• There are four output messages 
• Format of these messages is two symbols: (NT; ET; IT; RT) 

Iteration 4: test-friendly requirements 



Triangle Example 

TC # description a b c result 
1-14 Enter less than 3 parameters , enter symbols, enter 

negative and 0 values for each parameter 
NT 

15-17 a<b+c: 3 cases for predicate “<“, and each variable 
needs to be changed  

6 
6 
11 

2 
3 
3 

3 
3 
9 

NT 
NT 
RT 

18-20 b<a+c 2 
3 
3 

6 
6 
11 

3 
3 
9 

NT 
NT 
RT 

21-23 c<a+b 2 
3 
3 

3 
3 
9 

6 
6 
11 

NT 
NT 
RT 

24-26 2: a=b: three cases for predicate “=“ 11 
11 
3 

3 
11 
11 

9 
9 
9 

RT 
IT 
RT 

27-29 3: b=c (a=b) 
 

3 
11 
11 

3 
11 
11 

2 
11
3 

IT 
ET 
IT 

30-32 4: a=c (a<>b) 
 

3 
11 
11 

1 
9 
9 

2 
11
3 

RT 
IT 
RT 

33-35 5: b=c (a<>b and a<>c) 
 

1 
9 
9 

3 
11 
11 

2 
11
3 

RT 
IT 
RT 



A Simple Calculator in Google Search 
Iteration 1:  

Enter two numbers (a,b) separated by an operator (+,-,*,/) and then enter “=” 
Iteration 2:  

Enter input string: [+-]?\d+([,.]?\d*)[+-*/]?\d+([,.]?\d*)= 
Observe result as \d+(.?\d*) 

Iteration 3: State machine  

2 
sign 

1 
bef 

1 
after 

1 
dot 

1 
sign start 

res 

2 
bef 

2 
dot 

2 
after 

links 

\d 

+,- \d 

\d \d \d 

\d \d 

+,-,*,/ 

,. ,. \d 

+,-,*,/ 

\d 

= = 

a+b 
a-b 
a*b 
a/b 



A Simple Calculator in Google Search 
Iteration 4:  

Hierarchy of state machines  

2 
sign 

1 
sign start 

res links 

\d 

+,- \d \d 
+,-,*,/ 

\d 

= 

a+b 
a-b 
a*b 
a/b 

Enter a digit Enter a digit 



Ten Most Frequent Words 
A function for efficiently displaying the ten most frequent words in a file 
 
Iteration 1: Hierarchy of algorithms 

1. select all words from the file to a set of words:  
Words are “\w+ (‘word’ and ‘_’ characters)”, separated by “\s+ (spaces, 
tabs, \n, \r)” 

2. order all words (sort the set) 
3. count instances of each word in the ordered set 

(count the identical words in the sequence, save the number in the 
respective hash) 

4. find the ten biggest numbers (sort numbers in the hash) 
5. select the first ten words in the ordered hash  

 
Iteration 2: 
  



LED  

The panes contain a LED row for each T1/E1 port. When a dial feature 
card is up and an alarm is received on the associated T1/E1 port the 
respective LED should be lighten. T1/E1 Alarm can be associated with the 
one of the following: “loss of alignment”, or “loss of multi-frame” at the local 
or remote node. In addition, the same LED indicated receiving of ‘Alarm 
Indication Signal” from a board XYZ, or “RED Alarm” from a board ABC 
 
Iteration 1: Logical Condition  

DFC - a dial feature card is up 
LOA – receiving of a “loss of alignment” alarm 
LMF – receiving of a “loss of multi-frame” alarm 
AIS – receiving of a “loss of alignment” alarm 
REA - receiving of a RED Alarm 
B-XYZ – the board is XYZ 
B-ABC – the board is ABC 

 
For each T1/E1 the respective LED goes up if: 
(DFC and (LOA or LMF or (AIS and B-XYZ) or (REA and B-ABC))) 
 



Branch Delay 

<Requirement 124-2. Branch Delay> 
The OAM sends to RFM RO “GET_BRANCH_DELAY” action request, 
and as a result, the RFM RO requests delays of all associated XY 
units. The RFM RO requests delay from each XY RO via 
“ACTION_DELAY” message.  In the case where RFM unit is 
connected to a XY unit, the RFM RO monitors the state and status 
changes of its XY ROs and for the absence (i.e. supervisory 
notification) of the XY RO. After RFM RO has indicated acceptance of 
the “GET_BRANCH_DELAY” action request, a timer (4 sec) is started 
to wait for the XY ROs replies.  If the timer is expired, RFM RO sends 
the action complete indication with the status byte set to ERROR. If 
the GET_BRANCH_DELAY is received and the XY is already absent 
or not operationally enabled, the RFM RO sends an ACTION_RSP 
response with the NAK_CAUSE set to NAK_RSRC_UNAVAILABLE. 
Otherwise, the RFM RO return to OAM the response with delay value 
for XY RO with Frame2, and double value for XY RO with Frame3. 

<End. Requirement 124-2. Branch Delay> 
 



Branch Delay 

Iteration 1: Use sequence diagram 
 



 
 

Exercises 
 

GOAL 



Exercises  

Req-1. Select the error messages of the same type that 
are logged during two days of operations. All messages 
are stored in daily log files.   

 
Req-2. The X-MANAGER requests to change driver 
attributes and Y-SERVICE sends back the confirmation. 
The cache should always hold in-memory the 10 most 
recently requested driver types.  

 
Req-3. The module to select two Access Points with the 
best throughputs from all available 
 

 



More Exercises - 1 

<requirement 123> 
If the restart reason indicates that the controller restart was 
unplanned, the SERVER is responsible for retrieving the 
restart-context trace log and save it at the predefined location. 
The SERVER determines whether the controller reset was 
unplanned based on the reset reason provided by the LEC MW 
service. If the application reset reason is anything other than 
Software upgrade or NEM, the reset is considered unplanned. If 
the reset reason indicates the reset was unplanned, during its 
initialization the SERVER will send a FILE AVAILABLE event to 
the X-MANAGER over the HRAL global Event Channel. The 
location of the CCM restart context file is defined in the 
reset_config file under parameter “CCM_RESTART_LOC”. 
SERVER waits until after it sends the ACN containing the HW 
Type attribute before sending the FILE AVAILABLE event to the 
X-MANAGER with the restart context file location. 

<requirement 123> 
 

 



More Exercises - 2 

<Start: AL-046543-7560> 
The optimal storage for historical data can be safely limited to two days 
(600 records). Two attributes: GOOD_DATA_SAMPLES = M and 
AVG_QP_FOR_SAMPLES= N are provided that are settable via the 
SDF file.  
When the averaged qualityPercent of the records in the input data set 
is greater than or at least equal to N and scanning the first 6 hours of 
the input data set have found at least 12 records with a qualityPercent 
of >= 30% and scanning the last 6 hours of the input data set have 
found at least 12 records with a qualityPercent of >= 30% then the 
criteria for good data have been met.  
When the averaged qualityPercent of the records in the input data set 
is less than N, immediately raise a FLR to indicate that M or more 
records were found in shortHistory.txt file, but the averaged quality 
Percent fell below the N threshold to indicate the criteria for good data 
have not been met for linear regression. If the input data set from the 
shortHistory.txt file doesn’t contain at least M records then indicate the 
criteria for good data have not been met for linear regression. 

<End: AL-046543-7560> 
 

 



 
 

Conclusion 

GOAL 



Further reading 
Embedding testability , Professional Tester magazine, issue 27, June 
2014; 8-15; Presents an approach to test embedded systems 
  
QA of testing, Professional Tester magazine, issue 28, August 2014; 9-
12; Describes the process that guaranties the test automation in parallel 
with code development 
  
From test techniques to test methods, Professional Tester magazine, 
issue 29, November 2014; 4-14; Presents test design methods for all 
software models from expressions to state machine, syntax, instruction set 
  
Everything You Always Wanted to Know About Test, But Were Afraid 
to Ask Professional Tester magazine,  issue 32, June 2015 
Provides often Q&A on how to automate testing and do it in parallel with 
development  
  
Tower of Babel insights, Professional Tester magazine,  issue 35, 15-18; 
December 2015. Proposed standards that make requirements testable 

http://www.professionaltester.com/magazine/backissue/PT027/ProfessionalTester-June2014-Pelech-and-Solovey.pdf
http://www.professionaltester.com/magazine/backissue/PT028/ProfessionalTester-August2014-Solovey-and-Iorgulescu.pdf
http://www.professionaltester.com/files/PT-issue29.pdf
http://www.professionaltester.com/files/PT-issue32.pdf
http://www.professionaltester.com/files/PT-issue32.pdf
http://www.professionaltester.com/files/PT-issue32.pdf
http://www.professionaltester.com/files/PT-issue35.pdf
http://www.professionaltester.com/files/PT-issue35.pdf


Finita la Commedia 

Thank you for attending this session 
 
Vielen Dank für die Teilnahme an 
dieser Sitzung 

 
 

Send your comments or questions to 
gregory.solovey@nokia.com 

mailto:gregory.solovey@nokia.com

